
Computer Viruses|A Form of Arti�cial Life?

Technical Report CSD-TR-985

Eugene H. Spa�ord

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907{1398

spaf@cs.purdue.edu

September 19, 1991

This appears in Arti�cial Life II, SFI Studies in the Sciences of Complexity, vol. XII, Eds. D.

Farmer, C. Langton, S. Rasmussen and C. Taylor, Addison-Wesley, 1991.



Abstract

There has been considerable interest in computer viruses since they �rst appeared in 1981,

and especially in the past few years as they have reached epidemic numbers in many personal

computer environments. Viruses have been written about as a security problem, as a social

problem, and as a possible means of performing useful tasks in a distributed manner.

However, only recently have some scientists begun to ask if computer viruses are not a

form of arti�cial life|a self-replicating organism. Simply because computer viruses do not

exist as organic molecules may not be su�cient reason to dismiss the classi�cation of this

form of \vandalware" as a lifeform.

This paper begins with a description of how computer viruses operate, and the various

ways simple viruses are structured. It then examines how viruses meet properties associated

with life by researchers in the area of arti�cial life and self-organizing systems. This paper

argues the author's view that computer viruses meeting the de�nition probably does not

mean that they represent life, but rather that the de�nition is de�cient.



1 Introduction

There has been considerable interest of late in computer viruses. One aspect of this interest

has been to ask if computer viruses are a form of arti�cial life, and what that might imply.

This paper is a condensed, high-level description of computer viruses|their history,

structure, and how they relate to some properties that might de�ne arti�cial life. It provides

a general introduction to the topic without requiring an extensive background in computer

science.

The interested reader might pursue [10, 1, 2] and [5] for more detail about computer

viruses and their properties. The description in this paper of the origins of computer viruses

and their structure is taken from [10].

2 What is a Computer Virus?

The term computer virus is derived from and analogous to a biological virus. The word virus

itself is Latin for poison. Viral infections are spread by the virus (a small shell containing

genetic material) injecting its contents into a far larger body cell. The cell then is infected

and converted into a biological factory producing replicants of the virus.

Similarly, a computer virus is a segment of machine code (typically 200-4000 bytes)

that will copy its code into one or more larger \host" programs when it is activated. When

these infected programs are run, the viral code is executed and the virus spreads further.

Viruses cannot spread by infecting pure data; pure data is not executed. However, some

data, such as �les with spreadsheet input or text �les for editing, may be interpreted by

application programs. For instance, text �les may contain special sequences of characters

that are executed as editor commands when the �le is �rst read into the editor. Under

these circumstances, the data is \executed" and may spread a virus. Data �les may also

contain \hidden" code that is executed when the data is used by an application, and this

too may be infected. Technically speaking, however, pure data itself cannot be infected.

2.1 Worms

Worms are another form of software that is often referred to by the uninformed as a com-

puter virus. The Internet Worm of November 1988 is an example of one of these programs.

Unlike viruses, worms are programs that can run independently and travel from machine

to machine across network connections; worms may have portions of themselves running on

1



many di�erent machines. Worms do not change other programs, although they may carry

other code that does, such as a true virus.

In 1982, John Shoch and Jon Hupp of Xerox PARC (Palo Alto Research Center) de-

scribed the �rst computer worms. [7] They were working with an experimental, networked

environment using one of the �rst local area networks. While searching for something that

would use their networked environment, one of them remembered reading The Shockwave

Rider by John Brunner, written in 1975. This science �ction novel described programs

that traversed networks, carrying information with them. Those programs were called

tapeworms in the novel. Shoch and Hupp named their own programs worms, because in

a similar fashion they would travel from workstation to workstation, reclaiming �le space,

shutting o� idle workstations, delivering mail, and doing other useful tasks.

Few computer worms have been written in the time since then, especially worms that

have caused damage, because they are not easy to write. Worms require a network envi-

ronment and an author who is familiar not only with the network services and facilities,

but also with the operating facilities required to support them once they have reached the

machine. The Internet worm incident of November, 1988 clogged machines and networks

as it spread, and is an example of a worm. [9, 8]

Worms have also appeared in other science �ction literature. Recent \cyberpunk" novels

such as Neuromancer by William Gibson [4] refer to worms by the term \virus." The media

has also often referred incorrectly to worms as viruses. This paper focuses only on viruses

as de�ned here. Many of the comments about viruses and arti�cial life may also be applied

to worm programs.

2.2 Other Threats

There are many other kinds of vandalware that are often referred to as viruses, including

bacteria, trojan horses, logic bombs, and trapdoors. These will not be described here. The

interested reader can �nd explanations in [10] and [2].

2.3 Names

As the authors of viruses generally do not name their work formally and do not come

forward to claim credit for their e�orts, it is usually up to the community that discovers

a virus to name it. A virus name may be based on where it is �rst discovered or where a

major infection occurred, e.g., the Lehigh and Alameda viruses. Other times, the virus is

named after some de�nitive string or value used by the program, e.g., the Brain and Den

Zuk viruses. Sometimes, viruses are named after the number of bytes by which they extend

2



infected programs, such as the 1704 and 1280 viruses. Still others may be named after

software for which the virus shows an a�nity, e.g., the dBase virus. In the remainder of

this paper, viruses are referred to by commonly-accepted names. Refer to [10] or [11] for

detailed lists of virus names and characteristics.

2.4 A history lesson

The �rst use of the term virus to refer to unwanted computer code occurred in 1972 in a

science �ction novel, When Harley Was One, by David Gerrold.

1

The description of virus

in that book does not �t the currently-accepted de�nition of computer virus|a program

that alters other programs to include a copy of itself. Fred Cohen formally de�ned the term

computer virus in 1983. [1] At that time, Cohen was a graduate student at the University

of Southern California attending a security seminar. The idea of writing a computer virus

occurred to him, and in a week's time he put together a simple virus that he demonstrated

to the class. His advisor, Professor Len Adelman, suggested that he call his creation a

computer virus. Dr. Cohen's thesis and later research were devoted to computer viruses.

It appears, however, that computer viruses were being written by other individuals,

although not named such, as early as 1981 on Apple II computers.

2

Some early Apple II

viruses included the notorious \Festering Hate," \Cyberaids," and \Elk Cloner" strains.

Sometimes virus infections were mistaken as trojan horses, as in the \Zlink virus," [sic]

which was a case of the Zlink communication program infected by \Festering Hate." The

\Elk Cloner" virus was �rst reported in mid-1981.

It is only within the last three years that the problem of viruses has grown to signi�cant

proportions. Since the �rst infection by the Brain virus in January 1986, up to April 1,

1990, the number of known viruses has grown to nearly 60 distinctly di�erent IBM PC

viruses. The problem is not restricted to the IBM PC, and now a�ects all popular personal

computers. Mainframe viruses do exist for a variety of operating systems and machines,

but all reported to date have been experimental in nature, written by serious academic

researchers in controlled environments.

Where viruses have 
ourished is in the weak security environment of the personal com-

puter. Personal computers were originally designed for a single dedicated user|little, if

any, thought was given to the di�culties that might arise should others have even indirect

access to the machine. The systems contained no security facilities beyond an optional key

switch, and there was a minimal amount of security-related software available to safeguard

1

The recent reissue of Gerrold's book has this subplot omitted.

2

Private communication from Joe Dellinger.

3



data. Today, however, personal computers are being used for tasks far di�erent from those

originally envisioned, including managing company databases and participating in networks

of computer systems. Unfortunately, their hardware and operating systems are still based

on the assumption of single trusted user access, and this allows computer viruses to 
ourish

on those machines.

2.5 Formal structure

True viruses have two major components: one that handles the spread of the virus, and

a manipulation task. The manipulation task may not be present (has null e�ect), or it

may act like a logic bomb, awaiting a set of predetermined circumstances before triggering.

These two virus components will be described in general terms, and then more speci�c

examples will be presented as they relate to the most common personal computer: the IBM

PC. Viruses on other machines behave in a similar fashion.

2.5.1 A Note About Mainframe Viruses

As already noted, viruses can infect minicomputers and mainframes as well as personal

computers. Laboratory experiments conducted by various researchers have shown that

any machine with almost any operating system can support computer viruses. However,

there have been no documented cases of true viruses on large multi-user computers other

than as experiments. This is due, in part, both to the greater restrictions built into the

software and hardware of those machines, and to the way they are usually used. Our

further comments will therefore be directed towards PC viruses, with the understanding

that analogous statements could be made about mainframe viruses.

2.5.2 Structure

For a computer virus to work, it somehow must add itself to other executable code. The

viral code must be executed before the code of its infected host (if the host code is ever

executed again). One form of classi�cation of computer viruses is based on the three ways

a virus may add itself to host code: as a shell, as an add-on, and as intrusive code.

Shell viruses A shell virus is one that forms a \shell" (as in \eggshell" rather than \Unix

shell") around the original code. In e�ect, the virus becomes the program, and the original

host program becomes an internal subroutine of the viral code. An extreme example of this

would be a case where the virus moves the original code to a new location and takes on

4



its identity. When the virus is �nished executing, it retrieves the host program code and

begins its execution.

Uninfected Program

Infected Program

Figure 1: Shell Virus Infection

Add-on viruses Most viruses are add-on viruses. They function by appending their

code to the end of the host code, or by relocating the host code and adding their own code

to the beginning. The add-on virus then alters the startup information of the program,

executing the viral code before the code for the main program. The host code is left almost

completely untouched; the only visible indication that a virus is present is that the �le

grows larger.

Intrusive viruses Intrusive viruses operate by replacing some or all of the original host

code with viral code. The replacement might be selective, as in replacing a subroutine with

the virus, or inserting a new interrupt vector and routine. The replacement may also be

extensive, as when large portions of the host program are completely replaced by the viral

code. In the latter case, the original program can no longer function.

5



Uninfected Program

Infected Program

Figure 2: Add-on Virus Infection

2.5.3 Triggers

Once a virus has infected a program, it seeks to spread itself to other programs, and

eventually to other systems. Simple viruses do no more than this, but most viruses are not

simple viruses. Common viruses wait for a speci�c triggering condition, and then perform

some activity. The activity can be as simple as printing a message to the user, or as complex

as seeking particular data items in a speci�c �le and changing their values. Often, viruses

are destructive, removing �les or reformatting entire disks.

The conditions that trigger viruses can be arbitrarily complex. If it is possible to write

a program to determine a set of conditions, then those same conditions can be used to

trigger a virus. This includes waiting for a speci�c date or time, determining the presence or

absence of a speci�c set of �les (or their contents), examining user keystrokes for a sequence

of input, examining display memory for a speci�c pattern, or checking �le attributes for

modi�cation and permission information. Viruses also may be triggered based on some

random event. One common trigger component is a counter used to determine how many

additional programs the virus has succeeded in infecting|the virus does not trigger until

it has propagated itself a certain minimum number of times. Of course, the trigger can be

any combination of these conditions, too.

6



Uninfected Program

Infected Program

Figure 3: Intrusive Virus Infection

2.6 How do viruses spread?

Computer viruses can infect any form of writable storage, including hard disk, 
oppy disk,

tape, optical media, or memory. Infections can spread when a computer is booted from an

infected disk, or when an infected program is run. It is important to realize that often the

chain of infection can be complex and convoluted. A possible infection might spread in the

following way:

� A client brings in a diskette with a program that is malfunctioning (because of a viral

infection).

� The consultant runs the program to discover the cause of the bug|the virus spreads

into the memory of the consultant's computer.

� The consultant copies the program to another disk for later investigation|the virus

infects the copy utility on the hard disk.

� The consultant moves on to other work preparing a letter|the virus infects the screen

editor on the hard disk.

7



� The system is switched o� and rebooted the next day|the virus is cleared from

memory, only to be reinstalled when either the screen editor or copy utility is used

next.

� Someone invokes the infected screen editor across a network link, thus infecting their

own system.

2.7 The three stages of a virus's life

For a virus to spread, its code must be executed. This can occur either as the direct result

of a user invoking an infected program, or indirectly through the system executing the code

as part of the system boot sequence or a background administration task.

The virus then replicates, infecting other programs. It may replicate into only one

program at a time, it may infect some randomly-chosen set of programs, or it may infect

every program on the system. Sometimes a virus will replicate based on some random event

or on the current value of the clock. The di�erent methods will not be presented in detail

because the result is the same: there are additional copies of the virus on your system.

Finally, most viruses incorporate a manipulation task that can consist of a variety of

e�ects (some odd, some malevolent) indicating the presence of the virus. Typical manip-

ulations might include amusing screen displays, unusual sound e�ects, system reboots, or

the reformatting of the user's hard disk.

2.7.1 Activating a virus

The IBM PC can be used as an example to illustrate how a virus is activated. Viruses in

other types of computer systems behave in similar manners.

The IBM PC boot sequence This section gives a detailed description of the various

points in the IBM PC boot sequence that can be infected by a virus. We will not go

into extensive detail about the operations at each of these stages; the interested reader

may consult the operations manuals of these systems, or any of the many \how-to" books

available.

The IBM PC boot sequence has six components:

� ROM BIOS routines

� Partition record code execution

8



� Boot sector code execution

� IO.SYS and MSDOS.SYS code execution

� COMMAND.COM command shell execution

� AUTOEXEC.BAT batch �le execution

ROM BIOS When an IBM PC, or compatible PC, is booted, the machine executes

a set of routines in ROM (read-only memory). These routines initialize the hardware and

provide a basic set of input/output routines that can be used to access the disks, screen, and

keyboard of the system. These routines constitute the basic input/output system (BIOS).

ROM routines cannot be infected by viral code (except at the manufacturing stage),

as they are present in read-only memory that cannot be modi�ed by software. Some

manufacturers now provide extended ROMs containing further components of the boot

sequence (e.g., partition record and boot sector code). This trend reduces the opportunities

for viral infection, but also may reduce the 
exibility and con�gurability of the �nal system.

Partition Record The ROM code executes a block of code stored at a well-known

location on the hard disk (head 0, track 0, sector 1). The IBM PC disk operating system

(DOS) allows a hard disk unit to be divided into up to four logical partitions. Thus, a 100Mb

hard disk could be divided into one 60Mb and two 20Mb partitions. These partitions are

seen by DOS as separate drives: \C," \D," and so on. The size of each partition is stored

in the partition record, as is a block of code responsible for locating a boot block on one of

the logical partitions.

The partition record code can be infected by a virus, but the code block is only 446

bytes in length. Thus, a common approach is to hide the original partition record at a

known location on the disk, and then to chain to this sector from the viral code in the

partition record. This is the technique used by the New Zealand virus, discovered in 1988.

(See �gures 4 and 5.)

ROM

Partition

Record

Boot

Sector

Figure 4: Hard disk before infection

9



ROM

Viral

Code

Original

Part. Rec

Boot

Sector

Figure 5: Hard disk after infection by New Zealand Virus

Boot sectors The partition record code locates the �rst sector on the logical partition,

known as the boot sector. (If a 
oppy disk is inserted, the ROM will execute the code in

its boot sector, head 0, track 0, sector 1.) The boot sector contains the BIOS parameter

block (BPB). The BPB contains detailed information on the layout of the �ling system on

disk, as well as code to locate the �le IO.SYS. That �le contains the next stage in the boot

sequence. (See Figure 6.)

ROM

Boot

Sector

IO.SYS

File

Figure 6: Floppy disk before infection

A common use of the boot sector is to execute an application program, such as a game,

automatically; unfortunately, this can include automatic initiation of a virus. Thus, the

boot sector is a common target for infection.

Available space in the boot sector is limited, too (a little over 460 bytes is available).

Hence, the technique of relocating the original boot sector while �lling the �rst sector with

viral code is also used here.

A typical example of such a \boot sector" virus is the Alameda virus. This virus relocates

the original boot sector to track 39, sector 8, and replaces it with its own viral code. (See

Figure 7.)

Other well-known boot sector viruses include the New Zealand (on 
oppy only), Brain,

Search, and Italian viruses. Boot sector viruses are particularly dangerous because they

capture control of the computer system early in the boot sequence, before any anti-viral

utility becomes active.

10



ROM

Viral

Code

IO.SYS

File

Boot

Sector

Figure 7: After Alameda Virus Infection

MSDOS.SYS, IO.SYS The boot sector next loads the IO.SYS �le, which carries

out further system initialization, then loads theDOS system contained in theMSDOS.SYS

�le. Both these �les could be subject to viral infection, although no known viruses target

them.

Command shell The MSDOS.SYS code next executes the command shell program

(COMMAND.COM). This program provides the interface with the user, allowing execu-

tion of commands from the keyboard. The COMMAND.COM program can be infected,

as can any other .COM or .EXE executable binary �le.

The COMMAND.COM �le is the speci�c target of the Lehigh virus that struck Lehigh

University in November 1987. This virus caused corruption of hard disks after it had spread

to four additional COMMAND.COM �les.

AUTOEXEC batch �les The COMMAND.COM program is next in the boot

sequence. It executes a list of commands stored in the AUTOEXEC.BAT �le. This is

simply a text �le full of commands to be executed by the command interpreter. A virus

could modify this �le to include execution of itself. Ralf Burger has described how to do

exactly that in his book Computer Viruses|A High Tech Disease. His virus uses line editor

commands to edit its code into batch �les. Although a curiosity, such a virus would be

slow to replicate and easy to spot. This technique is not used by any known viruses \in the

wild."

Infection of a user program A second major group of viruses spreads by infecting

program code �les. To infect a code �le, the virus must insert its code in such a way that

it is executed before its infected host program. These viruses come in two forms:

Overwriting The virus writes its code directly over the host program, destroying part or

all of its code. The host program will no longer execute correctly after infection.

11



Non-overwriting The virus relocates the host code, so that the code is intact and the

host program can execute normally.

A common approach used for .COM �les is to exploit the fact that many of them

contain a jump to the start of the executable code. The virus may infect the programs by

storing this jump, and then replacing it with a jump to its own code. When the infected

program is run, the virus code is executed. When the virus �nishes, it jumps to the start

of the program's original code using the stored jump address. (See Figure 8.)

JUMP Host Code Original .COM �le

JUMP Host Code Virus JUMP

After infection by

Overwriting virus

JUMP Host Code Virus JUMP

After infection by

Nonoverwriting virus

Virus Host Code

Simplest overwriting

infection strategy

Figure 8: Infection of user applications

Notice that in the case of the overwriting virus, the more complex infection strategy

often means that all but a small block of the original program is intact. This means that the

original program can be started, although often it will exhibit sporadic errors or abnormal

behavior.

12



Memory-resident viruses The most \successful" viruses to date exploit a variety of

techniques to remain resident in memory once their code has been executed and their host

program has terminated. This implies that, once a single infected program has been run,

the virus potentially can spread to any or all programs in the system. This spreading

occurs during the entire work session (until the system is rebooted to clear the virus from

memory), rather than during a small period of time when the infected program is executing

viral code.

Thus, the two categories of memory-resident virus are:

Transient The viral code is active only when the infected portion of the host program is

being executed.

Resident The virus copies itself into a block of memory and arranges to remain active after

the host program has terminated. The viruses are also known as TSR (Terminate

and Stay Resident) viruses.

Examples of memory-resident viruses are all known boot sector viruses, the Israeli, Cascade,

and Traceback viruses.

If a virus is present in memory after an application exits, how does it remain active?

That is, how does the virus continue to infect other programs? The answer is that it also

infects the standard interrupts used by DOS and the BIOS so that it is invoked by other

applications when they make service requests.

The IBM PC uses many interrupts (both hardware and software) to deal with asyn-

chronous events and to invoke system functions. All services provided by the BIOS and DOS

are invoked by the user storing parameters in machine registers, then causing a software

interrupt.

When an interrupt is raised, the operating system calls the routine whose address it

�nds in a special table known as the vector or interrupt table. Normally, this table contains

pointers to handler routines in the ROM or in memory-resident portions of the DOS (see

�gure 9). A virus can modify this table so that the interrupt causes viral code (resident in

memory) to be executed.

By trapping the keyboard interrupt, a virus can arrange to intercept the CTRL-ALT-

DEL soft reboot command, modify user keystrokes, or be invoked on each keystroke. By

trapping the BIOS disk interrupt, a virus can intercept all BIOS disk activity, including

reads of boot sectors, or disguise disk accesses to infect as part of a user's disk request.

By trapping the DOS service interrupt, a virus can intercept all DOS service requests

including program execution, DOS disk access, and memory allocation requests.

13



Interrupt 13h

Interrupt 14h

...

Interrupt 21h

BIOS

ROM

DOS

Figure 9: Normal interrupt usage

A typical virus might trap the DOS service interrupt, causing its code to be executed

before calling the real DOS handler to process the request. (See �gure 10.)

Interrupt 13h

Interrupt 14h

...

Interrupt 21h

BIOS

ROM

DOS

VIRUS

Figure 10: Interrupt vectors with TSR virus

2.7.2 Replication strategies

Types Viruses can be grouped into four categories, based on the type of �les they infect:

� Boot sector viruses that only infect boot sectors (or rarely, partition records)

14



� System viruses that are targeted against particular system �les, such as the DOS

command shell

� Direct viruses that scan through the DOS directory structure on disk looking for

suitable �les to infect

� Indirect viruses that wait until the user carries out an activity on a �le (e.g., execution

of a program) before infecting it

Transient viruses are always direct in that they attempt to infect one or more �les

(usually in the same directory or home directory) before terminating. Resident viruses

can be either direct or indirect (or worse, both). The recently reported Traceback virus

infects any �le executed (indirect), while also incrementally scanning the directory structure

(direct).

In general, indirect viruses are slower to spread, but often pass unnoticed as their

infection activities are disguised among other disk access requests.

Signatures to prevent reinfection One problem encountered by viruses is that of

repeated infection of the host, leading to depleted memory and early detection. In the

case of boot sector viruses, this could (depending on strategy) cause a long chain of linked

sectors. In the case of a program-infecting virus (or link virus), repeated infection may

result in continual extension of the host program each time it is reinfected. There are

indeed some viruses that exhibit this behavior (e.g., the Israeli virus extends .EXE �les

1808 bytes each time they are infected).

To prevent this unnecessary growth of infected �les, many viruses implant a unique

signature that signals that the �le or sector is infected. The virus will check for this

signature before attempting infection, and will place it when infection has taken place; if

the signature is present, the virus will not reinfect the host.

A virus signature can be a characteristic sequence of bytes at a known o�set on disk or

in memory, a speci�c feature of the directory entry (e.g., alteration time or �le length), or

a special system call available only when the virus is active in memory.

The signature is a mixed blessing. The virus would be easier to spot if reinfections

caused disk space to be exhausted or showed obvious disk activity, but the signature does

provide a method of detection and protection. Virus sweep programs are available that

scan �les on disk for the signatures of known viruses, as are \inoculation" routines that

fake the viral signature in clean systems to prevent the virus from attempting infection.

15



3 Viruses as Arti�cial Life

Now that we know what computer viruses are, and how they spread, we can ask if they

represent a form of arti�cial life. The �rst, and obvious, question is \What is life?" Without

an answer to this question, we will be unable to say if a computer virus is \alive."

One list of properties associated with life was presented in [3]. That list included:

� Life is a pattern in space-time rather than a speci�c material object.

� Self-reproduction, in itself or in a related organism.

� Information storage of a self-representation.

� A metabolism that converts matter/energy.

� Functional interactions with the environment.

� Interdependence of parts.

� Stability under perturbations of the environment.

� The ability to evolve.

� Growth or expansion

Let us examine each of these characteristics in relation to computer viruses.

3.1 Viruses as patterns in space-time

There is an obvious match to this characteristic. Viruses are represented by patterns of

computer instructions that exist over time on many computer systems. Viruses are not

associated with the physical hardware, but with the instructions executed (sometimes) by

that hardware.

3.2 Self-reproduction of viruses

One of the primary characteristics of computer viruses is their ability to reproduce them-

selves (or an altered version of themselves). Thus, this characteristic is met.

16



3.3 Information storage of a self-representation

This, too, is an obvious match for computer viruses. The code that de�nes the virus is a

template that is used by the virus to replicate itself. This is similar to the DNA molecules

of what we recognize as organic life.

3.4 Virus metabolism

This property involves the organism taking in energy or matter from the environment and

using it for its own activity. Computer viruses use the energy of computation expended by

the system to execute. They do not convert matter, but make use of the electrical energy

present in the computer to traverse their patterns of instructions and infect other programs.

In this sense, they have a metabolism.

3.5 Functional interactions with the virus's environment

Viruses perform examinations of their host environments as part of their activities. They

alter interrupts, examine memory and disk architectures, and alter addresses to hide them-

selves and spread to other hosts. They very obviously alter their environment to support

their existence. Many viruses accidentally alter their environment because of bugs or un-

foreseen interactions. The major portion of damage from all computer viruses is a result of

these interactions.

3.6 Interdependence of virus parts

Living organisms cannot be arbitrarily divided without destroying them. The same is true

of computer viruses. Should a computer virus have a portion of its \anatomy" excised, the

virus would probably cease to function normally, if at all. Few viruses are written with

super
uous code, and even so, the working code cannot be divided without destroying the

virus.

3.7 Virus stability under perturbations

Computer viruses run on a variety of machines under di�erent operating systems. Many

of them are able to compromise (and defeat) anti-virus and copy protection mechanisms.

They may adjust on-the-
y to insu�cient storage, disk errors, and other exceptional events.

17



Some are capable of running on most variants of popular personal computers under almost

any software con�guration|a stability and robustness seen in few commercial applications.

3.8 Virus evolution

It is here that viruses display a di�erence from systems we traditionally view as \alive."

No computer viruses evolve as we commonly use the term, although it is conceivable that

a very complex virus could be programmed to evolve and change. However, such a virus

would be so large and complex as to be many orders of magnitude larger than most host

programs, and probably bigger than the host operating systems. Thus, there is some doubt

that such a virus could run on enough hosts to allow it to evolve.

Mutations of viruses do exist, however. There are variants of many known viruses,

with as many as 15 known for some IBM PC viruses. The variations involved can be

very small, on the order of two or three instructions di�erence, to major changes involving

di�erences in messages, activation, and replication. The source of these variations appears

to be programmers (the original virus authors or otherwise) who alter the viruses to avoid

anti-viral mechanisms, or to cause di�erent kinds of damage.

There is also one case where two di�erent strains of a Macintosh virus are known to

interact to form infections unlike the \parents," although these interactions usually produce

\sterile" o�spring that are unable to reproduce further. [6]

3.9 Growth

Viruses certainly do exhibit growth. Some transient viruses will infect every �le on a system

after only a few activations. The spread of viruses through commercial software and public

bulletin boards is another indication of their wide-spread replication. One reasonable set

of estimates had the number of computer virus infections in 1989 at a level 50% above the

1988 rate.

3

The number of new virus \species" reported in the �rst four months of 1990

has undergone a 15-fold increase over the same period in 1989. Clearly, computer viruses

are exhibiting major growth.

3.10 Other behavior

As already noted, computers viruses exhibit \species" with well-de�ned ecological niches

based on host machine type, and variations within these species. These species are adapted

3

Personal communication, Assistant U.S. Attorney Bill Cook, quoting Bell Labs' estimates.

18



to speci�c environments and will not survive if moved to a di�erent environment.

Some viruses also exhibit predatory behavior. For instance, the DenZuk virus will seek

out and overwrite instances of the Brain virus if both are present on the same system.

Other viruses exhibit territorial behavior|marking their infected domain so that others of

the same type will not enter and compete with the original infection.

4 Summary and Comments

Our examination of computer viruses leads us to the conclusion that they are very close to

what we might de�ne as \arti�cial life." Rather than representing a scienti�c achievement,

this probably represents a 
aw in our de�nition. To suggest that computer viruses are

alive also implies to me that some part of their environment|the computers, programs,

or operating systems|also represents arti�cial life. Can life exist in an otherwise barren

and empty ecosystem? A de�nition of \life" should probably include something about the

environment in which that life exists.

I would also be disappointed if computer viruses were considered as the �rst form of

arti�cial life, because their origin is one of unethical practice. Viruses created for malicious

purposes are obviously bad; viruses constructed as experiments and released into the public

domain are likewise unethical, and poor science besides: experiments without controls,

strong hypotheses, and the consent of the subjects. Facetiously, I suggest that if computer

viruses evolve into something with arti�cial consciousness, this might provide a doctrine of

\original sin" for their theology.

More seriously, I would suggest that there is something to be learned from the study

of computer viruses: the importance of the realization that experimentation with systems

in some way (almost) alive can be dangerous. Computer viruses have caused millions of

dollars of damage and untold aggravation. Some of them have been written as harmless

experiments, and others as malicious mischief. All have �rmly rooted themselves in the

pool of available computers and storage media, and they are likely to be frustrating users

and harming systems for years to come. Similar but considerably more tragic results could

occur from careless experimentation with organic forms of arti�cial life. We must never

lose sight of the fact that \real life" is of much more importance than \arti�cial life," and

we should not allow our experiments to threaten our experimenters.

References

[1] Fred Cohen. Computer Viruses. PhD thesis, University of Southern California, 1985.

19



[2] Peter J. Denning. Computers Under Attack: Intruders, Worms and Viruses. ACM

Press (Addison-Wesley), 1990.

[3] J. Doyne Farmer and Alletta d'A. Belin. Arti�cial life: The coming evolution. In

Proceedings in Celebration of Murray Gell-Man's 60th Birthday. Cambridge University

Press, 1990. To appear.

[4] William Gibson. Neuromancer. Ace/The Berkeley Publishing Group, 1984.

[5] Lance J. Ho�man. Rogue Programs: Viruses, Worms, and Trojan Horses. Van Nos-

trand Reinhold, New York, NY, 1990.

[6] John Norstad. Disinfectant On-line Documentation. Northwestern University, 1.8

edition, June 1990.

[7] John F. Shoch and Jon A. Hupp. The `worm' programs|early experiments with a

distributed computation. Communications of the ACM, 25(3):172{180, March 1982.

[8] Eugene H. Spa�ord. An analysis of the internet worm. In C. Ghezzi and J. A. McDer-

mid, editors, Proceedings of the 2nd European Software Engineering Conference, pages

446{468. Springer-Verlag, September 1989.

[9] Eugene H. Spa�ord. The internet worm: Crisis and aftermath. Communications of the

ACM, 32(6):678{687, June 1989.

[10] Eugene H. Spa�ord, Kathleen A. Heaphy, and David J. Ferbrache. Computer Viruses:

Dealing with Electronic Vandalism and Programmed Threats. ADAPSO, Arlington,

VA, 1989.

[11] David J. Stang. Computer Viruses. National Computer Security Association, Wash-

ington, DC, 2nd edition, March 1990.

20


